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Growing networks with geographical attachment preference: Emergence of small worlds
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We introduce a simple mechanism for the evolution of small world networks. Our model is a growing
network in which all connections are made locally to geographically nearby sites. Although connections are
made purely locally, network growth leads to stretching of old connections and to high clustering. Our results
suggest that the abundance of small world networks in geographically constrained systems is a natural conse-
quence of system growth and local interactions.
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I. INTRODUCTION

Recently there has been considerable interest in the c
sification of physical systems according to the topologi
properties of the networks to which they map~e.g.,@1–10#!,
where the constituent parts are modeled as nodes and
between nodes denote some type of interaction~for reviews
see@11–14#!. This method of classification has the potent
to shed light on underlying organizational principles. In th
spirit, we focus on the ‘‘small world’’ network topology in
troduced by Watts and Strogatz@1#.

Here we represent a network as an undirected grap
collection of N points ~nodes! with connections~links! be-
tween some pairs of them. If two nodes are connected,
say that they areneighbors. We call the number of connec
tions to nodei the degreeof nodei and we denote itki .

Small world networks are characterized by two ma
properties. First, their characteristic path lengthL grows as
ln N or slower, similar to an Erdo˝s-Rényi ~ER! random net-
work. The characteristic path length is the smallest num
of links connecting a pair of nodes, averaged over all pair
nodes. Second, the network has a high average cluste
compared to an ER random network of equal size and a
age node degree. The clusteringCi of node i is defined by
Ci5qi /@(1/2)ki(ki21)#, where qi is the total number of
links between theki neighbors of nodei, and (1/2)ki(ki
21) is the maximum number of links that could exist b
tweenki nodes. Networks exhibiting small world characte
istics are found in many and varied fields of research. So
examples of such networks are the neuronal network of
worm C. elegans, the electric power grid of southern Cal
fornia, and the friendship network of Madison Junior Hig
School students@2#.

The Watts and Strogatz model is the following prescr
tion for creating a small world network. The initial state h
a fixed number of nodes equally spaced on the circumfere
of a circle. Each node is linked to itsm nearest neighbo

*Electronic address: jozik@umd.edu
1063-651X/2004/69~2!/026108~5!/$22.50 69 0261
s-
l

ks

l

a

e

er
f

ng
r-

e
e

-

ce

nodes, wherem is even and nearest here refers to the dista
along the circumference of the circle. In this way a regu
network with a large average clustering is created. Nex
proportion p of the links are chosen at random and ‘‘r
wired’’ such that one end of the link is kept fixed and th
other end is linked to a randomly chosen node. These
dom links can serve as short cuts across the circle, drastic
decreasing the characteristic path length of the network
was found@1# that, for a relatively small rewiring probability
p, the characteristic path length of the network becom
comparable to that of an ER random network, while the n
work still maintains a high average clustering.

The network construction of the Watts and Strogatz mo
very nicely illustrates the small world property and, furthe
more, it is probably a reasonable model for how some n
works are formed. However, the small world property is,
course, much more general than their particular example,
it is useful to study other mechanisms for forming sm
world networks. In particular, we will be interested in ne
works that grow in time from small size to large size by t
successive addition of new nodes~see@5,11–14# for other
models of growing networks!.

Many networks have their topology influenced by ge
graphical constraints. The nodes are separated by s
physical distance and thus their ability to know the compl
state of all the network nodes at a given time is restrict
Consequently, in our model we restrict the formation of lin
between nodes to result from geographically local proces
That is, when a new node appears, it forms links only
those preexisting nodes that are geographically close to i
spite of the link formation being exclusively local, long
range links will be shown to arise as a result of netwo
growth. This in addition to the clustering induced by loc
connections yields the small world property.

We say that a growing network model has the small wo
property if it satisfies the following three criteria as the nu
ber of nodesN→`: ~a! small average node degree,^k&
5O(1); ~b! small characteristic path length,L; ln N; and
~c! high average clustering,^C&5O(1) ~i.e., ^C& does not
decay withN).
©2004 The American Physical Society08-1
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Part ~a! of the definition is included to ensure that high
connected networks that trivially satisfy criteria~b! and ~c!
are not considered to be small world networks~e.g., if every
node is connected to every other node thenL5^C&51 but
^k&5N21).

II. GROWING NETWORK MODEL

Our model, as mentioned above, is a growing netwo
We begin with an initial state ofm11 all-to-all connected
nodes on the circumference of a circle~Fig. 1!. ~We takem to
be even.! We note that this initial state is chosen solely f
convenience and it has no effect on the long-time netw
properties. At each subsequent discrete time step we g
the network according to the following prescription:~a! a
new node is placed in a randomly chosen internode inte
along the circle circumference, where all intervals have
same probability of being chosen;~b! the new node makesm
links to itsm ~previously existing! nearest neighbors. Neare
here refers to the distance measured in number of inter
along the circumference of the circle.

These steps are repeated sequentially, creating a net
with a temporally growing number of nodesN. We note that,
since the network sizeN is incremented by one with eac
discrete time step,N can be used interchangeably as a syst
size or a time variable.

III. DEGREE DISTRIBUTION

We now calculate the degree distribution for our netwo
whenN is large. We defineĜ(k,N) as the number of node

FIG. 1. Our growing network model, illustrated form52. We
begin withm11 completely connected nodes on the circumfere
of a circle~top left!. At each subsequent time step we~a! add a new
node in a randomly chosen internode interval along the circle
cumference, with every interval having equal probability of bei
chosen, and~b! connect the new node to itsm nearest neighbors
with nearest here referring to distance along the circle circum
ence. Steps~a! and~b! are repeated until the desired system size
reached.
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with degreek when the system size~or time! is N. Since all
new nodes are initially created withk5m, and links can
only be added to nodes,Ĝ(k,N)50 for k,m. At time N, a
node with degreek5m is added to the network, and if i
links to a previously existing nodei, thenki→ki11. Each
preexisting node is equally likely to be connected to the n
node, and therefore the probability that a given preexist
node has its degree increased by 1 ism/N.

We now take the average over all realizations of the p
sible random placements of the new node. This yields
following evolution equation for the average ofĜ, which we
denoteG,

G~k, N11!5S 12
m

NDG~k,N!1
m

N
G~k21, N!1dkm ,

~1!

wheredkm is the Kronecker delta function. The first term o
the right-hand side is the expected number of nodes w
degreek at time N whose degree remain the same at tim
N11. The second term is the expected number of no
with degreek21 at timeN whose degree increase tok at
time N11. The third term represents the new node w
degreem.

We letH(k,N)5G(k,N)/N be the fraction of nodes with
degreek at timeN, i.e., the degree distribution. In the appe
dix, we show that for largeN, H(k,N) approaches an asymp
totically N invariant formH̄(k), given by

H̄~k!5
1

m11 S m

m11D k2m

~2!

for k>m and H̄(k)50 for k,m.
In Fig. 2, the data points represent the degree distribu

P(k) for a single network realization randomly grown by o
algorithm ~illustrated in Fig. 1! for m52 at N5105. The

e

r-

r-
s

FIG. 2. The open circles represent the degree distributionP(k)
for a network grown according to our model withN513105 and
the solid line is the analytically calculated ensemble averaged
gree distribution@Eq. ~2!#, both withm52.
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solid line isH̄(k) from Eq.~2!, also withm52. We observe
good agreement between the analytical calculation for
ensemble average over realizations and the simulation
single realization, with both showing an exponentially d
caying degree distribution. This agreement illustrates t
‘‘self-averaging’’ applies for largeN.

In addition, we can calculate the average node degre
time N, ^k&, asN→`:

^k& lim N→`5 (
k5m

`

kH̄~k!52m. ~3!

This can be seen also by observing that each timeN in-
creases by 1,m new links are formed, and since each link h
two ends, the sum of the degrees of all nodes increase
2m at each time step. Thus, our first criterion for a sm
world network~that ^k& remains bounded asN→`) is met.

IV. CLUSTERING

For the particular case ofm52 we can calculate the av
erage clustering of the network exactly. For this value ofm,
a new node joins the network withk52 and q51. Each
subsequent addition of a link to that node increments bok
andq by one. Thus,q5k21 for all nodes. Since, by defini
tion, Ci52qi /ki(ki21), the average clustering over a
nodes in them52 case is given by

^C&52K 1

kL 52(
k52

`
1

k
H̄~k!5

3

2
ln 321'0.648. ~4!

The open circles in Fig. 3 are the node averaged clus
ing for single network realizations randomly grown by o
algorithm~illustrated in Fig. 1! versus the network sizeN for
m52. As N grows, these data are observed to approach
ensemble averaged largeN result given by Eq.~4! ~dashed
line!. In networks with larger values ofm we also observe

FIG. 3. Average clusterinĝC& vs system sizeN for simulated
networks with m52. As N grows, the average clustering ap
proaches the value~dashed line! predicted in Eq.~4!.
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approach of^C& to a constant asymptotic value asN in-
creases~the asymptotiĉ C& grows with m; e.g., form54,
^C&.0.653).

The network maintains a high average clustering asN
→` and, therefore, the second criterion for a small wo
network is met. This high clustering is expected due to
local nature of the links made. A new link is inserted in
region that already has high interconnectivity, assuring t
the nodes with which the new connections are made ha
high probability of having connecting links to each other.

V. CHARACTERISTIC PATH LENGTH

The open circles in Fig. 4 showL, the shortest path length
between pairs of nodes averaged over all node pairs of si
growing network realizations, on a linear scale versusN on a
logarithmic scale. The data shows a linear trend, demons
ing the desired slow growth of geodesic path lengths w
system size; i.e.,L; ln N. Thus, the third, and final, sma
world network criterion is also satisfied.

To see whyL grows more slowly thanN, consider the fact
that, although the links made by incoming nodes are alw
local, the network itself is growing. The older nodes that h
once been nearest neighbors along the circle~and therefore
linked! are pushed apart as newer nodes are inserted into
interval between them. Figure 5 illustrates this for the case
m52. The network begins as three nodes linked to e
other. By the time the network reachesN5100, we see that
the original nodes are not adjacent but, rather, have a la
number of newer nodes between them. Thus, growth lead
long links between old nodes, and these long links are
shortcuts responsible for a short characteristic path leng

To see whyL; ln N, imagine a network of sizeN@1 and
characteristic path lengthL. Now if we grow the network by
addingN new nodes, these nodes will be roughly uniform
distributed along the circle circumference. This means th

FIG. 4. Semilogarithmic graph of the characteristic path len
L vs the system sizeN. The data shows the small world slow pa
length growth characteristic,L; ln N. The straight line is a fit to the
data.
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on average, a new node would be a distance ofO(1) from
one of the firstN nodes. Thus, asN→2N @i.e., lnN→ln N
1O(1)], we expectL to increase toL1O(1), resulting in
L; ln N.

VI. CONCLUSION

We presented a small world network model that has o
geographically local interactions. This model provides
physically realistic mechanism by which growing physic
systems that have geographical constraints, and there
limited global information available to each individual nod
can form networks with small world characteristics. Add
tionally, our results suggest that small world networks
geographically constrained physical systems may be a n
ral consequence of system growth and local interactions

APPENDIX: CALCULATING H̄ „K…

We substituteH(k,N)5G(k,N)/N, the fraction of nodes
with degreek at timeN, into Eq. ~1!, obtaining,

~N11!H~k,N11!5~N2m!H~k,N!

1mH~k21, N!1dkm . ~A1!

We defineH̄(k) to be theN independent solution to Eq
~A1!. Substituting into Eq.~A1! and rearranging terms w
get

H̄~k!5
m

m11
H̄~k21!1

dkm

m11
. ~A2!

This recursion relation is solved to yield

FIG. 5. An illustration of network growth in our model form
52. The network starts off~left! with three adjacent nodes, labele
by A, B, andC, connected to each other via links. When the netw
reaches a network size of 100 nodes~right!, the original three la-
beled nodes are no longer adjacent, but have been ‘‘pushed a
by the new nodes that were inserted between them. The links
nectingA, B, andC serve as shortcuts~similar to the shortcuts in the
Watts-Strogatz model@1#!, resulting in a small characteristic pat
length for the network.
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H̄~k!5
1

m11 S m

m11D k2m

~A3!

for k>m and H̄(k)50 for k,m.
Now we show that asN→`, H(k,N) approachesH̄(k).

Dividing ~A1! by N11 and subtracting from this the sam
equation but withH̄(k) inserted, we obtain after some alg
bra

H~k, N11!2H̄~k!5
N2m

N11
@H~k,N!2H̄~k!#1

m

N11
@H~k

21, N!2H̄~k21!#. ~A4!

Letting F(k,N)5(m11
N )@H(k,N)2H̄(k)#, we find that~A4!

is equivalent to

F~k,N11!5F~k,N!1
m

N2m
F~k21, N!. ~A5!

Our goal is to show thatF(k,N)/(m11
N )→0 asN→`.

Consider first the casek5m. Since F(m21, N)50,
~A5! implies thatF(m,N)5C for some constantC indepen-
dent ofN. Thus, in particular,

H~m,N!2H̄~m!5
C

S N
m11D , ~A6!

andH(m,N)→H̄(m) asN→`. Then whenk5m11, ~A5!
becomes

F~m11,N11!5F~m11,N!1
m

N2m
C ~A7!

and hence

F~m11, N!5F~m11, m11!1C (
N85m11

N21
m

N82m
; ln N

~A8!

for largeN.
Furthermore, it is possible to show by induction onk that

uF~k,N!u<C~k!~m ln N!k2m ~A9!

for someC(k) independent ofN. In other words,

uH~k,N!2H̄~k!u<C~k!
~m ln N!k2m

S N
m11D ~A10!

which approaches 0 asN→`.

k
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